Estimates for Weighted Bergman Projections on Pseudo-convex Domains of Finite Type in C

نویسندگان

  • P. CHARPENTIER
  • Y. DUPAIN
  • M. MOUNKAILA
چکیده

In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in C. The main result is obtained for weights equal to a non-negative rational power of the absolute value of a special defining function ρ of the domain: we prove (weighted) Sobolev-L and Lipschitz estimates for domains in C2 (or, more generally, for domains having a Levi form of rank ≥ n− 2 and for “decoupled” domains) and for convex domains. In particular, for these defining functions, we generalize results obtained by A. Bonami & S. Grellier and D. C. Chang & B. Q. Li. We also obtain a general (weighted) Sobolev-L2 estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Bergman and Szegö Projections for Pseudoconvex Domains of Finite Type with Locally Diagonalizable Levi Form

This paper deals with precise mapping properties of the Bergman and Szegö projections of pseudo-convex domains of finite type in C whose Levi form are locally diagonalizable at every point of the boundary (see Section 2 for a precise definition). We obtain sharp estimates for these operators for usual Lpk Sobolev spaces, classical Lipschitz spaces Λα and nonisotropic Lipschitz spaces Γα related...

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Extremal Bases, Geometrically Separated Domains and Applications

In this paper we introduce the notion of extremal basis of tangent vector fields at a boundary point of finite type of a pseudo-convex domain in C, n ≥ 3. Using this notion we define the class of geometrically separated domains at a boundary point and we give a description of their complex geometry. Examples of such domains are given, for instance, by locally lineally convex domains, domains wi...

متن کامل

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013